«
  
»
De a formula geral da p. g. (2,4,)


RESOLVENDO

Selma,
para encontrar o termo geral de uma sequência qualquer basta saber a razão e o 1º termo, pois bem:
\( \begin{cases}a_1=2\\ q=a_2/a_1~\to~q=4/2~\to~q=2\end{cases} \)
Agora substitua os dados acima, na fórmula do termo geral da P. G. :
\( a_n=a_1\cdot q^{n-1}\\ a_n=2\cdot2^{n-1}\\ a_n=2\cdot2^n\cdot2^{-1}\\ a_n=2\cdot \dfrac{1}{2}\cdot2^n\\ a_n=1\cdot2^n\\ termo~geral~da~P. G. ~acima~\to~\Large\boxed{\boxed{\boxed{a_n=2^n}}}.\\. \)
Ótimos estudos



TAREFAS SIMILARES: