«
  
»
considere as matrizes A=(aij) e B (bij) quadradas de ordem 2, com aij= 3i+4j e bij =-4i - 3j
sabendo que C A + B, determine C².


RESOLVENDO

Veja e confira com os seus cálculos.  
\( A= \left[\begin{array}{ccc}a11& a12\\a21& a22\end{array}\right] = \left[\begin{array}{ccc}(3.1+4.1)&(3.1+4.2)\\(3.2+4.1)&(3.2+4.2)\end{array}\right]=\left[\begin{array}{ccc}7&11\\10&14\end{array}\right] \)
\( B= \left[\begin{array}{cc}b11& b12\\b21& b22\end{array}\right] = \left[\begin{array}{cc}(-4.1+-3.1)&(-4.1+-3.2)\\(-4.2+-3.1)&(-4.2+-3.2)\end{array}\right]= \\ \\ B=\left[\begin{array}{ccc}-7&-10\\-11&-14\end{array}\right] \)
C=A+B
\( C=\left[\begin{array}{ccc}7&11\\10&14\end{array}\right]+\left[\begin{array}{ccc}-7&-10\\-11&-14\end{array}\right]=\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right] \)
C² = C*C
\( C^2=\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]*\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]=\left[\begin{array}{ccc}(0.0+1.1)&(0.1+1.0)\\(-1.0+0.1)&(-1.1+0.0)\end{array}\right] \\ \\ \\ \\ C^2=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right] \)
e.



TAREFAS SIMILARES: