«
  
»
Calcular o valor de a para que o polinômio A(X)=4x³+0x²+ax+64 seja divisível por B(X)=X²+2X-8.
OBS¹: PRECISO DE CÁLCULO E RESPOSTA,
OBS²: A MATÉRIA É POLINÔMIOS> DIVISÃO DE POLINÔMIOS> DIVISÕES POR X-A


RESOLVENDO

Baseando-se no  Teorema de D’Alember:
\( P(x)=Q(x). D(x)+R(x) \)
_____________________________________
\( A(x)=B(x). C(x)+D(x)\\D(x)=0\\A(x)=B(x). C(x)\\4x^3+ax+64=(x^2+2x-8)(ex+f)\\4x^3+ax+64=ex^3+2ex^2-8ex+fx^2+2fx-8f\\4x^3+ax+64=ex^3+x^2(2e+f)+x(-8e+2f)-8f\\4x^3=ex^3\\e=4\\0x^2=x^2(2e+f)\\0=2.4+f\\f=-8\\ax=x(-8e+2f)\\a=-8e+2f\\boxed{a=-32+-16=-48} \)



O que achou desse conteúdo? Deixe seu comentário
TAREFAS SIMILARES: